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TECHNICAL MEMORANDUM X -64833

CMG-INDUCED LST DYNAMICS

INTRODUCTION

The nature of the control moment gyroscope (CMG) output gimbal bear-
ing friction has been the subject of many discussions and presentations by
various investigators. It is important to know the precise nature of the torque
caused by the bearing friction so that its effect on the dynamic behavior of the
Large Space Telescope (LST) and its pointing and control system (PCS) can be
predicted. The objective of the analysis and supporting computer simnulations
reported hereir. is to study the effect of the assumed CMG nonlinearity upon
the system dynamics in order to develop an understanding of the nature and
effect of variations of numerical values of parameters upon the system. The
weakness of the mathematical analysis used results from the need to restrict
the complexity of the model studied; however, the design insight obtained is
valuable.

The parameter plane analysis technique used herein makes use of the
describing function to portray the nonlinearity representing CMG gimbal bearing
friction. Where the describing function is a complex value, the technique
developed for a system containing two nonlinearities may be applied [1]. This
technique affords both analytic and graphic portrayal of the effects of variations
in selected system parameters. With few exceptions (noted herein) the results
are confirmed with analogue computer simulation.

Finally, the reader is cautioned against relying solely on computer
simulations without adequate mathematical analysis as a background. An
attempt to use an analogue computer to define stability boundaries for satellite
dyramics as characterized by the Mathieu equation should convince even the
skeptic of the weakness of computer simulation when not augmented by mathe-
matical analysis. A current example in the field of digital simulation is the
errors contained in Connell's paper (2] reported by Schiehlen [3].

The following four models are considered in this report; three of them
are analyzed in detail.




1. A model developed by the Bendix Corporation and presented to MSFC
in April 1972 [4-6112, A single axis representation of the CMG, rate gyro,
and rigid body dynamics is shown in Figure 1,

CMG
Fo- == - -

__1“" G, (s} 4
a I ivS ] 8

bon «
-h
°.

RATE
GYRO

. Kq Ris)

Figure 1. Bendix model number 1.
2. A Sperry model (Fig. 2) presented to MSFC in December 1972.

3. Another Bendix model presented in March 1973 (Fig. 3).

4. The model developed by Dr. P. R. Dahl of Aerospace Corporation
(the so-called Dahl model). This model may be incorporated in a single oxis
representation (Fig. 4), where the nonlinear relation between the frictional
torque (Tf) about the CMG output gimbal pivot and the gimbal rotation (5)

is portrayed as the nonlinearity N. The mathematical description, develoved
by Dahl, of this relation is

.
o e
e

Tf = y5 ] \1)

1. CMG Considerations for HEAO and High Accuracy Point Missions. Written
Presentation Material, Bendix Corp. Teterboro, N.J., April 21, 1972.

2. Whitley, G.W.: LST Fine Pointing Control System Desigr. MSFC S&E-
ASTR-SD-78-72 Letter, Oct. 3, 1972.
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and is shown in Figure 5, where v and TGFo are parameters describing the

friction relationship and the overdot represents differentiation with respect to
time.

"

igrg

—
$-

- Ty

Figure 5. CMG friction nonlinearity a la Dahl. -

ANALY SIS TECHNIQUE

The objective of the analyses presented herein is to determine stability
~onditions for systems that may be represented schematically, as in Figure 6.
The plant under consideration is represented by a linear pert G(s) and a non-
linear eler.ent N. In the sequel N will be used to represent the nonlinear
friction characteristics of the CMG gimbal pivot. In particular it is of interest
to investigate the possibility of existence of limit cycles and to determine their
characteristics. As used herein the term "'limit cycle'" will be used synono-
mously with the term ''self- excited sustained oscillation.'" Hence, a limit




+ {
' o N b - Gl =

Figure 6. Basic r.alinear system.

cycle represent: . steady-state oscillation to which or from which all neigh-
boring trajectories in a state space wili converge or diverge {7,8]. The
stability of limit cycles may be defined in terms of three classes:

1. Stable (Orbitally Stable) Limit Cycle — If all neighboring state
space trajectories converge to the limit cycle.

2. Unstable (Orbitally Unstable) Limit Cycle — If all neighboring
s.ate space trajectories diverge irom the limit cycle.

3. Semistable (Orbitally Semistable) Limit Cycle — If state-space
trajectories originating at points outside the limit cycle converge to it and
thos~ originating from points inside the limit cycle diverge from it, or vice
versa.

Because of the low pass nature of the linear parts of the system plants
under consideration, they are particularly amenable to analysis through
application of describing function theory. Hence a detailed discussion of
aporopriate describing functions is needed [9]. It is assumed that, if a
sustained oscillation occurs, the input x 1; Yescribed by

>
x = Asin Qt . (3)
%
™t ig assumed that the output f(x) ts approximated by the relation
f(x) =~ NA sin (Q+ o)t , (4)

where ¢ represents a phase shift.




The method of analysis used is defined in Reference 1 and embodies a
describing function technique developed by Siljak [10]. It is assumed that the
system being analyzed is amenable to describing function analysis and the
system parameters are time-invariant. In essence, a describing function (N)
is used to represent the nonlinearity. The characteristic equation representing
the system is then obtained. For a limit cycle to occur, it is required that all
characteristic equation roots have negative real parts except for one pair of
roots which must be purely imaginary roots. This condition is determined
mathemati~ally and for ease of visualization may be portrayed graphically. In
the latter case, two adjustable parameters are selected, at least one of which
must also contain N, (If N is a complex quantity, its real and imaginary
components may be used as the two parameters and Reference 1 may be applied
directly.) A correlation between these parameters and the roots of the charac-
teristic equation is then determined by mapping stability contours from the
complex s-plane onto the chosen parameter plane. For the systems considered
herein, only three (and sometimes fewer) such stability boundaries exist and
they are easily found.

The first boundary (the one associated with real roots of the charac-
teristic equation) is found by setting s= 0 in the characteristic equation.
(Graphically this boundary may be identified by single hachures.) The second
one (the one associated with purely imaginary roots) is found by setting
s = iw. (This boundary is identified by cross-hachures.) The third one, called
the boundary at infinity (in topological mapping from the complex s-plane to the
Riemann sphere, it is associated with the sphere's north pole), is found by
setting 1/s = 0 in the characteristic equation. It also is identified by single
hachures. From these boundaries, the stable region (if it exists) may be
determined in terms of the selected adjustable parameters, for they bound the
stable region.

The nonlinear locus of N as a function of the two adjustable parameters
is determined next. The simultaneous solution of the nonlinear locus relation
and the purely imaginary root boundary yields the condition for a limit cycle,
assuming the indicated solution occurs adjacent to a stable region (which may
not always be the case). This is readily apparent on the parameter plane as
the intersection between the purely imaginary root boundary and the nonlinear
locus. From this point of intersection, the frequency (identified as w= Q) and
magnitude (A) of an indicated limit cycle may be determined as a function of
the characteristics of the nonlinearity and of the adjustable parameters.
Further, the behavior of the limit cycle when a small perturbation is applied to
its amplitude, and, nence, the nature of limit cycle stability, also is apparent
on the parameter plane.




ANALYS IS OF BENDIX MODEL NUMBER 1 (Fig. 1)

Four variations of Bendix model number 1 were studied and are identified
herein as Cases I through IV:

1. CaseI — This model consists of a perfect attitude rate sensor
characterized by

R(s) = 1 (5)

and a CMG characterized by the nonlinear element N and a first order trans-
fer function

G_(s)= < : (6)

G S +w

This is the basic model considered.

2. Case Il — A model characterized by a perfect attitude rate sensor,
equation (5), and a CMG modeled as a nonlinear element N and a second
order transfer function

R

s7+gls+g0

GG(s) = . (7)

The effect of a higher order model of the CMG is induced by comparing the
results of the analyses of Cases I and II. It is similar to several models con-
tained in the documents cited in References 4 and 5 and footnote 2.

3. Case Ill — A model consisting of an imperfect attitude rate sensor
described by a first order transfer function

W
R(s) = - (8)




and a first order characterization of the linear portion of the CMG, equation
(6). This model permits an analysis of the effect of a nonperfect attitude rate
sensor. It is the model documented in Reference 6 and footnote 2.

4. Case IV — An imperfect attitude rate sensor, equation (8), and a
second order characterization of the linear portion of the CMG, equation (7).
This model is similar to several mmodels documented in References 4 and 5.

Because the precise nature of the relationship between the input (x) to
the nonlinear element (N) of the CMG model and the output f(x) is obscure,
the effect of variations of the parameters describing that relationship is studied.
In particular it is desired to predict whether nr not sustained oscillations in
the vehicle's attitude and attitude rate will occur and, if so, what their charac-

teristics are (in terms of amplitude, period, and stability) under various
prescribed conditions.

Basic Nonlinearity

If the small overshoots occurring at x=D and x= - D (Fig. 1) are
ignored, the describing function is

Y
3
-
=
v
—

. (9b)

For small values of m (m << k), the relation approximated by the describing
function defined in equations (9) then becomes

N
K

I
—
1
ER M
IA
—

[sin”u + (1 - -z-)u\r—l_:—u?] , u (10a)

=0, u>1 (10b)



Bl =y

where

i,
ué % ’ (10¢)
and
13 d -I\—l‘\ . (10d)

Although the describing function may be found in a number of texts on nonlinear
oscillations, this author was unable to locate a sketch of the variation of the
describing function N with variations in the parameters A, D, M, and k. By
selecting combinations of these parameters in a certain way, an interesting
analogy between this particular describing function and a system familiar to
control system engineers was discovered. Symbols D, M, and k are described
on Figure 15 D represents the dead zone, and M and slope k characterize the
gain through N.  If N 'k is plotted versus A D with £ as an independent param -
eter (Fig, 7), it is observed that all curves begin from a common point at
NKk=0 for A’'D- 1 and asymptotically approach a value of unity for large
values of A'D. It £ = | the curves never rise above the value of unity.

Lra

How-
ever, if < 1 the curves rise from their initial value of zero to a peak value
greater than unity and then (as A ‘D increases) approach the unity asymptote
from above. The analogy to a second order control system is interesting,
Here, & is analogous to the damping ratio . Further study of tiie describing
function reveals the amplitude of the peak value of N/k and the values of ¢ and
u (and hence D, M, and k) for which the peak occurs. If equation (10a) is
optimized with respect to u, it is found that the peak value, N; Kk, of N’k
occurs when u has the value

-1
uo- -T._’ . (ll)

General (i.e., independent of numerical values for A, D, and k) curves of

No/k versus ¢ and AO/D( l/uo) versus { may be plotted from equations

(10a) and (11) and are shown in F igure 8. These relationships will be used
in subsequent predictions of limit cvele conditions.

10

1
2
1
f
:
3
§
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e




A

¢
{x) N/k

Figure 7. Describing functions for Bendix model nuniber 1
nonlinearity (simplified).

Additional insight into the nature and dynamic effect of the nonlinearity's
parameters A, D, and k may be cbtained by considering certain limit cases.

Limit Case 1 (Ideal Relay). If the dead zone (D) of the basic non-
linearity (Fig. 1) is neglected and slope k decreased to zero, an ideal relay
characteristic is obtained where

N = Yy . (12)

A diagram of this relationship is shown in Figure 9, setting k=0,

Limit Case 2 (Relay With Dead Zone). If the dead zone of the basic
nonlinearity is retained but slope k set at zero, a relay with dead zone charac-
teristic is obtained where

, AMN 1 -
N = —-_;\—- N u

A
p—t

. (13)

This relationship is shown in Figure 19, Observe that DN/M has a peak value,
This may be found by setting ¢ = 0 (since k= 0) in equation (11) and sub-
stituting u, D/A = 1N 2 in equation (12) yielding a peak value of DN/M =

1t

2/7T = 0,6366.




12

10

No/.

-

Ao

nonlinearity (simplified).

N
L. - 2.4
“_{ DES. PY. 2 16.1707, £ o= 0.03982 5 - 142880
14p- N
2w
Ao ¢
4]
172
10r-
113
A 1 i 1 L A 1
[} 0.9 02 04 o8 o8 10
Figure 8. Pcak value parameters of Bendix model number 1
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Limit Case 3 (Gain with Dead Zone). If the height M of the baaic non-

linearity is collapsed to zero, a gain with dead zone characteristic results
where

lf{-=l-%(sin"u+u’~/l-u’) , U =<1 |, (14)
This relationship is shown in Fig»'re 11,
]
i
13 i
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Firure 11. Describing function relation for gain with dead zone.

Limit Case 4 (Preload). If the dead zonc of the basic nonlinearity is
ccllapsed to zero, a prelcad characteristic results, yielding

T ’ (15)

This relationship is shown in Figure 9 with k#0 .

Limit Csse 5 (Gain Change). If the parameter of M of the general non-

linearity (Fig. 1) is set equal to zero, a gain change characteristic results,
yielding

fi

~|2Z
i
—

-%'(L-%)Ssin-’u+u 1-v') , us=s1, (16)
u

v
[
v

The relation is shown in Figure 12,

The four cases will now be analyzed in detail, considering the above :
limit cases [equations (12) through (16)] and the general case modified by
setting m equal to zero [equations (10)].

Analysis of Case |

The characteristic equation is

&

i s+ wcs2 + BNs + AN = 0, (17)

14

s e e

{
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Figure 12. Describing function relation for gain change.

where
K w
- d
A = ;) c , (18a)
v
and
K w
5 ¢ i < (18b) i
v

It is readxly shown that the stable region of operation, in terms of
parameters AN BN lies in the first quadrant and is bounded by the real root
boundary (AN = 0) and the imaginary root contour

|
elﬁzﬂ

(19)

(¢}

From definitions (18), the nonlinear locus is seen to be a straight line
through the origin with slope K /K . These two lines are shown on Figure 13.

Since they canrot intersect, hmit cycle operation is not indicated. A stable
response ic indicated if Kl/Ko > l/wc and, if KI/KO < l/wc, the system

response will be unstable.
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Figure 13. CaseI (Bendix mcdel number 1) — stability characteristics.

If the pitch axis is chosen as the single-axis about which rotational
dynamics will be studied, the numerical values given in Table 1 may be used
as representatives of the IST. With the exception of @, and wg’ these values

were obtained from Reference 5. The value for w, is obtained by matching

the break frequency W, [equation (6)] with the break frequency of the second
order sy:iem:

w =N g072 = 70.7 rad/s . (20)

c

The value selected for w is representative of a bandwidth-limited rate

gyroscope and is low enough to indicate the dynamic effect of this degradation.
Using Table 1 values, it is seen that a stable response is indicated, i.e. ,

Kl/KO> l/wc.
Analysis of Case |1

The characteristic equation is

st + gls3 + g032 + Kk Ns 4 kyN =0 (21)
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TABLE 1. LST NUMERICAL VALUES
% Parameter Numerical Value
= K_ = 10* (rad/s)?
¢ g 141.4 rad/s
& 1
H 610 Nms
o 2 2
IGE 5.012 Nms? (3.7 ft 1b s?)
I 1.356 X 10° Nms?
KO 4.6843 X 10 Nm
Kl 1.1153 X 10° Nms
kF 6.600 %X 10° Nm/rad
0.707
C"CMG
4 (= 2 _
K 4.352 % 104 ( w? 1, bf)
x 10% (= 2
K 7.087 % 104 ( 4 w IG)
W, 70.7 rad/s
w 30 rad/s
g
wnICMG 100 rad/s

g ~y wr s—— TR AR O Jr—— -



where

[f=)

KO KG/IV . (22a)

and

.

d. . . o
k., = 1\1 I\G/IV . (22b)

Thae real root boundary is

= DD
kN =0 ‘ (23)

and the imaginary root boundary, in terms of parameters kON and klN , may
be written as

k. N
klN g, - =

H I 1
Kol . (24)

or, written as a function of the independent argument, frequency (w),

kON

"

(gD (253)
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From equations (22), the N-locus is expressed as

Kl\
kN = E'o')koN . (26)

A limit cycle and its characteristics are indicated by the simultaneous solution
of equations (25) and (26), yielding

g, I K g
1 v 0°1
N = ————— g - —— (27)
1\1 KG (0 K1 )
and
K g
0°1
G = .
i g, K] (28)

The frequency £ of the indicated limit cycle is determined by system param-
eters g o’ g, K 0’ K 1 and has the same value regardless of the type of non-

linearity chosen for N. Although the value of N is also independent of the
type of nonlinearity, the amplitude A of the limit cycle is dependent on the
relation between N and A, e.g., equations (10), and (12) through (16).
Equations (23), (25), and (26), are plotted on Figure 14. The simultaneous
solution of equations (25) and (26) is indicated by the intersection labeled

limit cycle.

Before numerical values are used, some general characteristics may
be deduced. If the nature of the nonlinearity is such that N increascs monn-
tonically as A increases [curve (1), Fig. 14], then an unstable limit cycle

is indicated. However, if N increases but approaches a limit asymptotically

as A increases, the iimit cycle will accur only if ihe asymptote has a value of

klNLC corresponding to the limit cycle [for curve (2), the value is less, so
no limit cycle is indicated]. If N decreases monotonically as A increases,

19
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a stable limit cycle will occur as long as the curve of klN versus A begins

at a value greater than klNLC [e.g., curve (3)]. If the curve remains above
the value of klNLC for all A [curve (4)], no limit cycle will occur. These
nbservations lead to an investigation of describing function characteristics for

R various appropriate nonlinearities.

Limit Case 1 (Ideai Relay). Since N decreases monotonically as A
. . increases, a stable limit cycle is indicated with an amplitude [see equation (12)]

A = 4M/N7 . (29)

[N is obtained from equation (27) and frequency € is obtained from equation

(28).1

If the numerical values of Table 1 are used,
N = 16.1707 . (30)
= 96.985 rad/s = 15.4357 Hz . (31)

if, for example, M is chosen as 0.055, a value of AS = 0.00434 is
predicted.® The amplitude NA of the assumed sine wave f(x) is NA =
0.07018. The amplitude of IelLC and lolLC of oscillations in 8 and 9

may be determined from this relationship with the signal x (Fig. 1). Assum-
ing the form of equation (3) for x, the amplitude of the 6 limit cycle IOl
and the & limit cycle |6| may be approximated by

. A
T cum— 29
|0} LC Kl (32a)

3. Superscripts u and s refer to quantities associated with unstable and
stable limit cycles, respectively.

21




and

e
. . 32
lo| e ol (32b)

Using equations (32), amplitudes of |0l Lo and 10| Le ore found to be

4.0123 X 10-!" pad and 3.891 % 107 rad’s, respectively.

Limit Case 2(Relay With Dead Zone) . In this case stable operation
without a limit cvele is indicated if DN/M < 2/7, If DN'M ~ 2 7, both
stable limit eyele and an unstable limit cyele are predicted, sinee the curve of

klN versus A rises above the value of klNlC to a peak value and then falls
&

below it A case of academic interest arises when DN M is precisely equal
to 2 7. In that case, a semistable limit eyvele will occur. Using a vatue of
M 0.55 and D 0.0011, equation (13) may be solved fer the two predicted
X u S . Lo LU
values of A, A 0,004 and A 0. 0042, and amplitudes of f(x), NA

=

0.0184 and NA™ - 0,0679. From cquation (32), 0 and ¢ limit evele magni-

. u - s, u -
tudes are four " to be IelLC - 1,0539 < 107" rad, IeILC - 1,0221 ~ 1079 rad/s.

Limit Case 3 (Gain With Dead Zone) . It is seen from equation ( 14)
and Figures 17 and 14 that an unstable limit eycie will occur if Kk~ N, and
stable operation will occur it k < N. An example is obtained by setting kK 20,
I D 0,011, equation (14) may be solved for the predicted value of A:

u . u s oo - X
A 0.0729. From equation (32), (ol e 5 7396 X 107 pad and 0]

u
1.C

N [\ .
6.5364 ~ 108 rad - s, Amplitude of f(x) then becomes NA 11738, D
u u
0.00022, then A 0.00146, NA  0.02361, |o| Lo LSy 10~ pad, and

-
lﬂl‘l 1.3001 ~ 1072 pad s,

A}
4

Limit Case 4 (Preload). It is apparent from equation (15) and Figures
9 and 14 that a stable limit eyvele is predicted if kK < N and that unstable opera-
tion will occur it K~ N. An cexample of the effeet of a vreload characteristic
nonlincarity is obtained by setting K 1, M 0,055, Solving equation (15) tor

s 8
A, one predicts A 0.0046 16 and NA 0.07464 . From equation (32),

| N
lnll 4,267 ~ 10" pad and 1l Lo delasss 1070 rad s,

(\

te

to



the value of asymptote N/k= 1 when &> 1 (k> M/D). Using the same means
of analysis as used in the preceding cases, numerical examples corresponding
to each of these six conditions are developed. They are summarized with the

results of the numerical examples of the five limit cases in Table 2. Attention

is directed to the case covered by Condition 1 where M= D, k= 1: This is
the set of conditions on *he nonlinearity that is used in References 4 through 6
and footnote 2 and is reported as causing limit cycles. The analysis contained
herein disagrees with the reported results in that this analysis predicts stable

operation and the absence of any limit cycles.

Analysis of Case |11

The characteristic equation is

S (w4t w)s e w8t w (Kow + K )X_\l_s_
C y c g c 1 ¢ 0 Iv
= N
t v, W K — = .
oy Ry T 0 , (34)

where overbars are used on gains K 0 and K 1 to identify them with the system

of equation (34) rather than Case II. Comparing equation (34) to equation {21),

one can immediately draw conclusions from the analysis associated with the
system represented by equation (21). Matching the terms,

Ry = owe ey, , (35a)

By T WYy ' (33b)

k0 l-iogo/lv , (35¢)
and

kl W, ’RO t Kl)/‘v (35d)
24
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Limit Case 5 (Gain Change). For the anticipated values of m << k .

equation (16) is approximated by equation (14). It is anticipated that the
results of the analysis of Limit Case 3 will apply approximately to Limit Case
5.

Basic Nonlinearity (Fig. 1). The effect of varying the basic non-
lincarity's parameters k, M, and D will be investigated in detail. An examina-

fd

tion of Figures 7 and 14 yields most of the following information:

Condition 1. N> Kk = M/D: Stable operation (no limit cycle).

Condition 2. N>K<M'D> k‘ o} Two limit cycles; one stable, one

. u s
unstable with A - A

Condition 3. N>K<M Dok’ o Stable operation { no limit evele).
Condition 4. N - kK~ M D: Unstable limit cyele,

Condition 5. N K < M. D: Unstable limit cvele,

Condition 6. N>k <M D= k/’io: Semistable limit cvele.

Additional information was needed to obtain the inequality relationships

between Mo D oand k;‘O for conditions 2, 3, and 6. From equation (11), it

is seen that a peak in Nk versus A ‘D can occur only when

- (33a)

Fial

or

I
—
.

(33b)

Since D A must be less than unity for equation (10a) to be applicable,
it is seen from equation (11) that inequality (33a) is meaningless physically.
Also from equation (10b), it is scen that < ~ 0. To summarize, N K will
have a peak only when 0« 2 < 1 (k « M/D) and will approach but not exceed

23
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Now, equations (21) through (26) may be used directly for this model. ,
Hence, it is seen that the effect of wg — i.e., a nonideal rate gyro — is to ;

introduce the possibility of a limit cycle, considering Coaditions 1-6 listed
previously. A numerical example is selected using the values in Table 1,
yielding N=9.69 and Q = 40.64 rad/s. If a nonlinearity of M= D and
k=1 is chosen, it is again seen {Condition 1) that limit cycle operation will
not occur. The analysis used in Case I and summarized in Table 2 is directly
applicable to this case as well.

Analysis of Case 1V

The characteristic equation is

5 1, 3 2
s’ + (gl + wg)s (go + wggl)s + wggos + (wgﬁ + «) Ns

+ waN =0 , 36
g (36)
'r
where
o« & KK (37a)
0°G v o7a -
and
B d. K,K_/1 37b)
- 1'G v ) (87

The stable region, in terms of an oN - 3N parameter plane, is bounded by
the real root boundary

aN = 0 (3%)




and the imaginary root boundary

g
= 2 - /“ + ..l 2 ‘
aN = o' lg \1 = | , (39a)
g
and
BN = g w? (1+w/w?) (39b)
1 g »
Again, the nonlinear locus is the straight line determined by equation
(39):
BN = (KI/KO) ot . (40)
.

This is shown in Figure 15. If a limit cycle is to occur, it will have the
characteristics associated with the intersection of the boundary defined by
equations (39) and the nonlinear locus [equation (40)]. Using the numerical
values of Table 1 to solve equations (39) and (40) simultaneously leads to

N = 2.103 (41)
and
Q = 40.959 rad/s = 6.519 Hz . (42)

The six conditions listed previously may be used tc analyze the possi- ,_‘-'
bility of limit cycle operation. Again, it may be readily concluded that for '
M=D and k=1, limit cycle operation will not occur. Limit cycle charac-
teristics for other values of M, D, and k may be predicted, however. Examples
are summarized in Table 2.
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Most of the results presented above for Bendix model number 1 have
been confirmed by analogue simulation.* The model of Figure 1 was set up on
the EAI 231R-V computer in the Astrionics Laboratory at Marshall Space Flight
Center. The simulation diagram used is shown in Figure 16, and the nonline-
arity used on the computer is shown in Figure 17. This simulation description
is detailed and lengthy because it graphically portrays numerous combinations
of unusual limit cycles normally found only in textbooks.

¢y 10 ¢,

kyx10~ P14
fx) +(10] 10 o {1 (102)
10 104314 Y2
1 1414
v10 103 L

10
L\
Tz/.oxm-‘
l +100

1318 21109

'.no‘ .
]

Simuiation of Case |

Several simulation runs were made to confirm the predicted stable

behavior of the system. The simplicity of the results does nov warrant repro-
duction hercin, so they are omitted.

Simulation of Case || -

[ 4

. ’ This case provides the basis of the results reported herein an‘.{"is

described in detail. The tabulated results (Table 2) will assist the reader in
following the discussion.

4. The results presented in this section are due to the efforts of Mr. P. H.
Fisher, Guidance and Control Systems Branch, Systems Division, Astrionics
Laboratory, MSFC, who worked with the author to confirm the analytically
derived results. His contributions are gratefully acknowledged.
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Figure 17. Analogue simulation diagram for CMG nonlinearity of
Bendix model number 1.

Limit Case 1 (Ideal Relay). A stable limit cycle is predicted and is
confirmed in Figures 18 and 19. In Fizure 18, the limit cycle trajectory is

approached from within (in a state space sense) with x{0) < AS, and in Figure

19 the limit cycle trajectory is app:oached from the outside with x(0) > A%,
Hence, the stability of the limit cycle is demonstrated. The steady state

amplitudes of x, i.e., AS, 6 and 6 , may be read directly from Figures 18
and 19 and are tabulated in Table 2 for comparison with the predicted values.
Only the value of the magnitude of f(x) varies appreciably from predicted
values because of its assumed (for describing function analysis purposes)
sinusoidal shape. The frequency of the sustained oscillation closely matches
the predicted frequency () in this case and all other Case II simulations.

Limit Case 2 (Relay With Dead Zone). Both the unstable and stable
limit cycles are predicted ‘or this case. The amplitude of A was too small
(i.e., too nearly identical to dead zone D) to be observed. However, the
stable limit cycle was detected and its nature confirmed. A sample run, with

s C g
(%W A, is shown in Figure 20,

Limit Case 3 (Gain With Dead Zone). Because of the close agreement
between analytical and simulation results in other cases, this case was not
simulated,
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osx10-9 7t

0 0

{rad]
- 0.5x10-91T

(rad/s]

T VAAAAAARARAA

AL LA RO
IR

T

-0.1 L . ) ; ‘ ' ) .

0 o1 o2 0.4 o4 'Y on 1.0
Figure 19, Limit Case 1 (Ideal Relay) simulation, M 0. 055:
xXL0) ~ AT,
Limit Casce 4 (Preload).  This is another case of a predicted stable

limit evele. Similar to the approach of Limit Case 1, the predicted stable
limit evele characteristies are confirmed in Figures 21 and 22,

N VT |




— - - + - - tis)

- [ 01 02 04 os 'Y 10

Figure 20, Limit Case 2 (Ideal Relay with Dead Zone) simulation,
D= 0.0011, M = 0.955: x(0) <A®.
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Figure 21. Limit Case 4 (Preload) simulation, k -

1, M= 0.055:
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Figure 2

2. Limit Case 4 (Preload) simulation, k- 1, M 0, 055:

x(0) ~ A,

({1]

Liniit Case 5 (Ggin Change) . This case, similar to Limit Case 3 since

m ~« k, was not simulated,



Basic Nonlinearity

Condition 1 (N> k = M/D). As predicted and indicated in Figure 23,
all initial conditions within the limits of scaling resulted in stable operation.

?
6 °
ot Nl
~0.2%x10~8

L4

—
;
-t
o
|
~
T

N am—

1 4

Figure 23. Basic nonlincarity simulation, k=1, D= M - 0.011.
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Condition 2 (N> k < M/D > k/so). In this condition (as in Limit Case

2) hoth unstable and stable limit cycles are predicted. As in the nature of
unstable limit cycles, it is extremely difficult to maintain their oscillations.
However, Figure 24 contains a good example of an unstable limit cycle main-
tained for several periods before the trajectory escapes to the sustained

oscillation of the stable limit cycle (AS > A"Y). In another run (not included in
report), the unstable nature of the limit cyclc was seen as the states decreased
to zero. The stable nature of the larger amplitude cycle is confirmed in Figure

25 where x(0) > AS .

0x10-4 :\-\_\-\-\‘\’\m‘.
t o e e e o o G = ™ ™

lredl 4 20108

Al

t o.2x10-7

. )
]
(radin} —0axv0-7}

tHx)

Figure 24, Basic nonlinearity simulation, k= 4,95, D= 0,011,

M= 0.275: x (0) < AY,
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Figure 25.

Basic nonlinearity simulation, k= 4,95, D= 0,011,

Mo0.275: x (0) > AT,

Condition 3 (N> K~ M/D <k /io) . As predicted, stable operation

ensues (Fig, 26).
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Figure 26. Basic nonlinearity simulation, k= 0.95, D= M = 0,011,
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Condition 4 (N« k > M/D). This case (Fig. 27) provides an unusually

good example of an unstable limit cyele maintaining a sustained oscillation for
a large number of periods before (in this case) the responsc diverges from
the limit c¢ycele trajectory.,

'10‘.:-\_\_\%6—‘
0 o -

[rad)

—10-8

10-7}

Lo- AAAAAAhﬂﬂhﬂﬂﬁﬂﬂﬂﬂﬂﬂﬂnﬂﬂﬂﬁﬁhAAA

S TYNIVTOUTV VUV V UV

-0~

\
jo;\AAnnAAAAAAAAA AAAAAAAAAAAAAAAA

gLk

A A A -
o 0y 02 oA 08 o8 10 12 1.4 1K 18

Figure 27, Basic nonlincarity simulation, k20,

D M- 0,011

Condition 5 (N <« k « M D). Figure 28 is an example of an unstable
limit cvele. The first run shows the elusive unstable limit ¢vele trajectory
rapidly diverging to a stable response. The second run shows the trajectory,
just as quickly, diverging to an unstable response,
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Figure 28. Basic nonlirearity simulation, k= 20, D= 0.011,

M= 0.275




Condition 6 (N <k < M/D= K/&O) . This run (Fig. 29) confirms the
predicted behavior of a stable limit cycle and an unstable limit cycle merged

into one, yielding a semistable limit cycle. In this run, x(0) > AYS and the
system response approaches and maintains the limit cycle behavior. After a
number of cycies elapse, however, the response leaves the limit cycle tra-
jectory to assume a stable response. Hence, the limit cycle is stable when
the trajectory is approached from outside and unstable when approached from
inside.

f 05x10-8 } \_\—V\‘
0
[ X

(rad]

—05x10—8 I—

¢ osxi0-7}

)
(ratta) ° WUVMAAAAAAAAMAAW__
05x10-7

b D AAAAAAAAANAAANAAAAAAADAAA.

-~ 08 F
AtY= 018
(#(x)} %Y= 28
’ -2F
fix) 0
-2 U
— A I A i A - I A i tiay
0o 01 02 oA [\Y ] o8 1.0 12 14 1.8 18

Figure 29. Basic nonlinearity simulation, k=1, D= 0.011,

M= 0.257: x (0)> A™S,

Simulation of Case |11

Because of the close relationship to Case II, this case was not simu-
lated.
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Simulation of Case |V

This case should have been confirmed by simulation but was concluded
because of time constraints.

Summary

Because the describing function technique assumes that the input and
output to the nonlinearity are both sinusoidal in nature, it is to he expected
that the actual magnitudes of these transcendental functions will only be approx-
imated by the mathematical estimates. The closeness of the predictions to the
simulation resulis is surprisingly accurate, considering the shape of the wave-
forms at the output of the nonlinearity. The predicted time periods were
particularly accurate.

ANALYSIS OF SPERRY MODEL (Fig. 2)

A brief (compared to the preceding analysis) analysis was made of the
Sperry model that was presented to MSFC in December 1972. The character-
istic equation associated with the model is

g K
0 ;1 1
+ IVKON + HKl e + xlN + Hlxo = s
F F
Y )
+ HLKIKON'+ Kol o= * %N |s - HK kN = 0 (43)
] F
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where N represents the CMG nonlinear element (gimbal pivot friction). If
l/kF and N are selected as the two parameters of interest in the limit cycle

and stability investigation, one obtains three stability boundaries. The real
root boundary is

N=o0, (44)
and the boundary at infinity is
N
1/kF =0 (45)
The imaginary root boundary may be written as
, = _ 92 - - 2 HK w 7 ]
1/1\F 1v [1\'1GE 94 (IVKO + thxl) Q2 + {1\0'\0] J  (46a)
= o @ ' ' (
N Iv [val H(I\OK1 + I\IKO)]/J {(46b)

where the Jacobian J of the simultaneous equations obtained from the real and
imaginary parts of equation (43) is

= - < < 2
J 9 [val o H(K k, + klx())]
4 - ‘ > 2 .
- (11, et - (IVKO * HK k) @+ HK « ] . (46¢)

For the general case, the l/kF - N parameter plane stability plot

takes the form of Figure 30. The region of interest of this figure for limit

cycle considerations is enlarged and plotted on Figure 31. Shown in I igure 10

is a sketch of the describing function relationship associated with the nonlinearity
N of the Sperry model (Fig. 2), where
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Figure 30, l/kF - N parameter plane — Sperry model.

N = 4MN'i - (D/A)YY /7A , A/D =1 . (47)

If the nonlinear locus N (as a function of A) is reflected from the describing
function graph onto the parameter plane, it is seen to be a vertical line rising

from (and returning to) l/kF as A increases positively. Thus if l/kF >

1.16 x 1077 (k_, < 8.62 x 10°), no limit cycle can occur. if 1’k_ < 1.16 x 1077,

F F
then .ero, two, or four limit cycles are predicted, depending on whether the
peak value of ND/M(= 2/7) intersects with none, one, or both >f the portions

. of the complex root boundary. From Table 1 it is seen that the nominal value
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Figure 31. Limit cycle region of interest on parameter plane —
Sperry model.

of kF is 6600 (1/kF - 1.52 < 107Y), indicating a wide margin of safety (for

the numerical value chosen for the system parameters of this model) for
precluding limit cycle operation. For example, if M- 10D= 2.2X 107 and
l/kF - 1< 10-7, then the lower value of N is 0.30X 10~ (with a corre-

sponding value of € = 0.57) and the upper value is 1.95 % 10~ (and € ~1.06}.
Since D is so small (with respect to unity), the two values of A corresponding
to each value of N are [from equation (47)1

A= IM/IN , 0 . (4%)
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| Thus two of the four indicated limit cycles have negligible amplitudes (A) and
- can be ignored. The other two significant amplitudes, the one corresponding

to N=0.3%10"% being a stable limit cycle (AS = 9337, € = 0.57) and the

other corresponding to N = 1,95% 10~ being unstable (Au= 1436, 2 ~ 1.06).
These results were not confirmed by analogue simulation. It is felt by the
author that they are sufficiently straightforward and do not warrant the effort.

ANALYSIS OF BENDIX MODEL NUMBER 2

An analyss of Bendix model number 2 was begun. Before it was
completed, the momentum of opinion appeared to swing strongly in the dire~tion
of the ''Dahl model'' (see next analysis section). The author was swept away
with this same enthusiasm and terminated analysis of Bendix Model No. 2.

ANALYSIS OF DAHL MODEL

The model chosen for the CMG and vehicle single-axis dynamics is
shown in Figure 4, The nonlinear relationship (indicated by the symbol N)
between gimbal friction torque TF and gimbal angle § is portrayed in Figure

5 and by equations (1) and (2). As in the above analyses, this analysis was
based on using a describing function to represent the nonlinearity N. This in
turn was based on the assumption of a sinusoidal input to the nonlinearity of
amplitude A and frequency €.

L UL TR SRR N

Kuo described this nonlinearity by developing a describing function
[11,12]. Instead of using the straight line approximations conventionally used
in the derivation of many describing functions, he used the actual curved lines
precisely representing equations (1; and (2). Using the complex notation of
N ’

N = N, + iN R (49)
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Kuo obtained the following expressions:

and

where

and

where

and
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where

\

+ 1 a‘+ 1
Tari = - Taro (‘ a TN ) (568)

and

- 1 al +1 .
Teri = Toro (‘ a W T) ’ (57)

where

2y . 3
a YA Tops (58)

The author found that Kuo's equations can be simplified considerably by

- +

observing that ¢ 5T = C ) and TGFi = - TGFi » leading to

- 1 o 1 C+A\?

M ST TR Ay l“(c -A) (59)
and

-— 24

B - & (—S— (60)

1 YA R

where C = (‘l . Alternately these expressions may be rewritten as funciions

of the arguments a and T » leading to

GFo
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- 2TGFo 1 “"

A = [— in (a +N af +1)? - 2] (61) é

1 1f a &

and p
N i

i

4T [ a E

B - GFo a+a+l+(a+1)Nal+1 1 (62)

1 2 2(a +N a% + 1) t

Approximations for these curves may be obtained by deriving the asymptotes
for N2 versus N1 . The asymptote associated with small values of a (a<<1)

18

z 3 2 0
N1 Y TGFo (63)
and the asymptote associated with large values of a (a>>1) is
LT/
(4T ) 3 Y 3 2
GFo A
N, = N, . (64)

The latter expression is simplified if one plots the real (N.) and imaginary
1os R 1
(N 2) parts of the describing function on log-log paper:

logN, = log K + %log N1 (65)

where

%%

(471
GFo (66) .
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Hence one obtains a stiaight line with a slope of 2/3 and a y-intercept of K
for one asymptote and a straight line, parallel to the v-axis, for the other
asymptote. The effect of variations in the gimbal bearing parameters T GFo
and vy may now be seen explicitly.

AR AN S s

Let kT be the factor by which T is increased (or decreased),

GFo

i.e. the new value of TGFo is k'I‘ times as large as the former value. Alsc
let k‘Y be the factor by which 7y is increased (or decreased). Then, examina-

tion of equations (63) and (64) shows the effect of altering the numerical
values of TGFo and vy is to multiply the former values of N1 and N2 (of

the describing functions) by the quantity, sz k_y .

Now, a general map of N2 versus N1 may be developed for use in
this and future limit cycle investigations for this particular form of nonlinearity.
It is universal in the sense that it permits one to choose any value of TGFo
and y and see its effect on the N2 versus N1 map. such as by placing it on
an Nl’ N 2 parameter plane stability map to predict and analyze iimit cycle

existence and behavior.

A new parameter is defined:

v = 'yTzGFo

(67)
Now, a map of N_/o versus Nl/cr is simply obtained vv plostting the two
straight lines (asymptotes) of equations (63) =nd (64) on Figure 32.

Values of A may also be found from Figure 32 by again resorting to

approximations. For the asymptote associated with relatively large values of
a,

4TGFo
TA

(63)

o
-
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Figure 32, Normalized Dahl desceribing function locus,
which leads to an expression for A in terms of N, o and parameters Yy and

TGFO:

4
(MTo o) (N, o)

Thus for any location on the large a (slanting) asymptote (curve 1, Fig, 32),
A may be determined for a given point by looking at the associated value of
N, o and using equation (69). For the range of numerical values used in the

LST analysis, equation (69) has proven to be a fairly peod approximation,

For the small a (vertieal curve 2 oon Fig, 32) asyvmptote, values of
A are found by approximating equation (61) with a power series and truncating,

: v .
Let the natural logarithm term, (a +\ av - 1), be approximated by the term,

¢ 227 4 2g 4 . (T0)




Then a power series expansionof Inf is

Int
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b | e
\-/
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3
_ 2afa+1) 2| a(a+1) (71)
Zrarl 3|Xrarl| T o )

Combining equation (71) with equations (61) and (51) leads to an approximation
for A as a function of N‘)/cr :

(@) () ) -

For LST numerical values, this turns out to be a poor, but barely acceptable,
approximation. The problem in approximations arises, for LST numerical
parameters, because a difference between two nearly ident.cal numbers is
required in equation (61).

Finally, equations (50), (51), (61), and (62) are used to determine
the transition curve connecting the two asymptotes. The describing function
plot of Figure 32 may now be used in conjunction with a stability contour, such
as will be developed in the next section, on an Nl’ N2 parameter plane, If it

is redrawn on a transparency it may be used with a stability map (as will be
demonstrated on Figures 34 and 35) without redrawing it each time by dis-

placing it in both the N1 and N2 direction by an amount equal to k’T k‘y .

(1t has been redrawn on Figures 34 and 35 for the sake of clarity in this paper.)

As in the previous analyses, the possibility of limit cycle existence will
be determined. When it is predicted that one exists, its characteristics will
be determined.

The model shown in Figure 4 may be described in conventional control
system form (closed loop transfer function) as
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The characteristic equation associated with this model is

N
)
! - R K - 22 CKos 4 KK - 0
s * K, ) s (K 2 NS 4 KiKps + KK
(74)
where
. HAO -
o 1 -
v
and
HAl
l\‘ E T . (76)

The system described by Figure 4 appears suitable for desceribing
function analysis because it is low pass and the system parameters are assumed
time invariant, A describing function N is used to represent the nonlinearity
(herein assumed to be CMG gimbal friction). Recall that for a limit evele to
occur, it is required that all characteristic equation (74) roots have negative
real parts except for one pair which must be purely imaginary roots. This
condition is determined mathematically and, for ease of visualization, is
portraved graphically. In the latter case, two adjustable parameters are
selected, N1 and N, A corvelation between these parameters and the roots

of the characteristic equation is determined by mapping the stability contours
from the complex s-plane onto the selected (Nl' Nq) parameter plane, For

the system under consideration, only one such stability beundary exists and is
casily found,

R



Analysis of equation (74) indicates the absence on the Nl’ N2 param-

eter plane of either a stability boundary associated with the real roots of the
characteristic equation or the boundary at infinity.

The simultaneous solution of the nonlinear relation of equations (50)
and (51) and the purely imaginary root boundary yields the condition for a
limit cycle, assuming the indicated solution occurs adjacent to a stable region
(true in this case). This condition is readily apparent on the parameter plane
as the intersection (if one occurs) between the purely imaginary root boundary
and the nonlinear locus of equations (50) and (51). From this point of inter-
section the frequency (2) and magnitude (A) of the indicated limit cycle(s)
may be determined 2s functions of the characteristics of the nonlinearity and
of the adjustable parameters., Further, the behavior of each limit cycle when
a small perturbation is applied to its amplitude and, hence, the nature of
limit cycle stability also is apparent on the parameter plane.

Turning to the characteristic equation (74) and setting s = iR, one may
obtain the real and imaginary parts of the equation:

— 4
-N]Q"’ = - (KOKI - Klszz + IGEQ) (77)
and

_NZQ = . (leI - Kpﬂz) , (78)

which yields the Jacobian
J =D > 04 > 0 . (79)

Solving equations (77) and (78) for the purely imaginary root boundary,
one obtains

I P -K®+K
- _ 'GE 5 051
N1 = v (80)
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and

-(K_ @ _KK)
N_ = 3 11 . (81)

This boundary (cross-hatched curve) is sketched on Figure 33, ‘he nature of
the Jacobian indicating where the stable region lies. If the nonlinear locus of
the describing function defined in equations (50), (51), (61), and (62) is also
drawn on the same Nl - N2 plane, it is seen that several conditions can occur,

depending on the numerical values selected for the system parameters. For a
_ fixed set of values for IGF’ KO, Kl’ l%, Kp, either no intersections {or predicted

limit cycles) occur (Fig. 34a) or two intersections occur (Fig. 34b). In the
latter case one limit cycle is stable (with indicated amplitude and frequency

A% and ©° , respectively) and one is unstable (Au, Qu) . In that case, if the
amplitude (A) of the assumed simusoidal input to the nonlinearity is always

less than Au, the output of the nonlinearity will asymptotically approach zero.

However if A ever exceeds the value Au (such as by an initial coudition) ’

y
then A will approach AS (and @ will approach £°). Iu the limiting case f

where the curves osculate but do uot intersect, a single semistable (orbitally

semistable) limit cycle is indicated. To interpret these phenomena physically, T
one may refer to Figure 4. The input to the nonlinearity is 6. Vor describing

function analysis, it is assumed to be sinusoidal and of the form of equation

(3), i.e.,

6 = A sin Qt . (82)

The output of the nonlinearity, T,, is then assumed to be of the form

f
Tt_% N6

= (N1 + iNz)b (83)
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N

= N, &6 + —=

1 o0

NlA sinf2t + N2A cos Qt

Ar/ N’1 + sz sin (Rt + ¢) , ¢ = tan-! (N2/N1) . (83)
(Concluded)
This is in the form of equation (4). Using equations (82) and (83) with the

relations shown in Figure 4, one may now obtain tge values of the other vari-
ables (e.g., 8 and 6) when Tc =0 and a limit cycle :s predicted.

Typical numerical values of LST were altered slightly, because of the
passage of time between analyses, and are shown in Table 3 (slightly different
from Table 1). They are described in Reference 13.

TABLE 3. TYPICAL NUMERICAL VALUES FOR LST

Parameter Numerical Value
A, 2 x 10* (rad-s) -1
Al 3% 10° (rad) !
H 271 Nms (200 ft-lb-s)
- 5.012 Nms? (3.7 ft-1b-s?)
I 1.354 x 10° Nms? (10° ft-1b-s?)
K 1,354 x 10* Nm (10! ft-Ib)
Kp 379 Nms (280 ft-1b-s)
TGFo €.271 Nm (0.2 ft-1b)
y 1.477 x 10° (Nm rad) ~! [2 x 10° (ft-Ib rad) -!]
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The curve for the purely imaginary root boundary is found by substitut-
ing numerical values from Table 3 into equations (80) and (81). If Table 3
values for v and T GFo are used for the nonlinear locus representing the

friction [equations (50), (51), (61), and (62)], it is seen that no intersections
between the two curves wiil occur (Fig. 35). (This is the case portrayed in
the sketch of Figure 34a.) Iience no limit cycles are predicted and stable
operation is predicted.

N2 UNSTABLE REGION

oF — N (8.0}
7x103F | is.0) A
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Figure 35. N, - N, parameter plane — Dahl model, y = 1.477 X 10° .

If the asumptotes are also plotted on Figure 35, one sees that, if during

the design evolution ¥ and/or TGFO are increased, the case shown in the

sketch of Figure 31b will occur. In that case two limit cycles are predicted,
one stable and one unstable. One such example is shown in Figure 36, where

y is increased to a value of 1.477 % 10°, The unstable limit cycle has a
predicted amplitude of 1.0 X 10-® rad and frequency of oscillations of 2.8 rad/s.
The stable limit cycle amplitude is 2.1 % 10~ rad with a frequency of oscilla-
tion of 5.2 rad/s. Practically, this means that if A has an initial value that
is greater than 1.0 X 10-% rad it will always converge to a value of 2.1 x 10~
(the s*a.ie .'mit cycle). However, if the value of A is never permitted to
exceed 1.0 x 10-% rad (the unstable limit cycle), no limit cycle operation will
occur and the system will be asymptotically stable.
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The above predictions were confirmed with a simulation on an EAI
231R-V analogue computer, again through the efforts of Mr. P. H. Fisher.
Figure 37 shows the stable limit cycle results, yielding measured values of
1.5% 107% rad and 5.2 rad/s for the amnlitude and frequency of oscillation of
the gimbal angle (6). Figure 38 shows the unstable limit cycle results, with
values of 2 X 10"7 rad and 2.4 rad/s for gimbal angle amplitude and frequency,
respectively. These values are sufficiently close to confirm the predicted
value within the limits of describing functions analysis assumptions. A sum-
mary of the analytical predictions and simulation results is given in Table 4.
Hence for the single nonlinearity considered, i.e., the output gimbal friction
relation developed by Dahl, no limit cycle is predicted for present’y esti:aated
LST numerical parameters., However, if the Gesign characteristics of the LST

CMGs should allow numerical values of vy and/or TCFO substantiaily larger

than those indicated in Table 3, twa limit cycles will occur, oue stable, one
unstable. A more detailed simulation effort hus been described by G. S.
Nurre,?

This analysis has considered neither the effect of multiple nonlinearities
nor the effect of sampling (such as will be performed by an orboard digital
computer). A sampled data analysis is now underway to consider the latter.

CONCLUSIONS

For nunicrical values considered to be representative of the LST and its
CMGs, analysis indicates (and analogue simulation confirms) the absence of
limit cycle bahavior due to the CMG output gimbal friction nonlinearity.
Because of the present early stage of development of the LST, it is expected
that the numerical values (and indeed mathematical characterization of CMG
friction models) will change. Because of this, a wide spread of numerical
values of actual variations in friction parameters has been examined. Further,
a general technique of analysis of such system has been specified and used in
great detail. This technique should be applicable to future alterations in the
LST. As such, it provides a design tool for enhancing the efficiency of large
scale computer simulation by predicting dynamic responses (thus aiding in the
time-consuming debugging process) and in helping to select numerical values
to be incorporated in the simulations. While the Dahl model has been widely
accepted by those involved in CMG dynamics, the author respectfully points
out that not too long ago the model termed herein as Bendix model number 1
was widely accepted (at least at MSFC).

5. G. S. Nurre, An Analysis of the Dahl Friction Model and its Effect on a
CMG Gimbal Rate Controller, S& E-ASTR-A, Unnumbered report, MSFC,
Oct. 18, 1973.
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Figure 37. Dahl model simulation, vy = 1.477 ~ 10°,

The analysis of Bendix model number 1, in particular, is quite detailed,

perhaps to the point of inciting boredom. However, not only is the general
analvsis technique presented but also a study of the effect of parameter varia-
tions is presented.  Also, from an academic viewpoint, it is interesting (to
some) to see actual examples of such usually obscure limit evele behavior as
orbitally semistable limit eyceles.
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Figure 38. Dahl model simulation, y = 1.477 X 10%,

TABLE 4.

SUMMARY OF DAHL MODEL RESULTS

Analytical Predictions

Simulation Results

N
- . Q .
(Nm rad) 7V [{ft-1b rad) 7! | Limit Cyele A (rad) Q (rad’s) A (rad) rad ‘s 8{ rad) O(rad s)
1.477 (2 < 10%) No
1.477 (2~ 10%) Unstable 1.0x10°¢ 2.8 201077 | 2.4 e gt
1.477 (2 < 10%) Stable 2.1 0 Y 5.2 1.5210% { 5.2 f 75107 | as o
6
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